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1 Introduction to Martingales

We introduce the concept of a martingale and prove a crucial lemma that will lead to showing
that sub-isotropic updates give us concentration.

Martingales are sequences of random variables that find applications in random walk and
gambling problems. A rich collection of Chernoff-like tail bounds are known for martingales
which make them a useful tool. Martingales are defined as follows:

Definition 1.1 (Martingale). A sequence of random variables Z0, Z1, ... is a martingale with respect to a
sequence of random variables X0, X1, ... if and only if for all n ≥ 0 the following are true.

• Zn is a function of X0, X1, ..., Xn;

• E[|Zn|] < ∞, i.e., Zn has well defined expectation;

• E[Zn+1|X0, ..., Xn] = Zn.

The last condition is something we saw in pipage rounding: the expectation of i-th coordinate
after rounding conditioned on its present value is equal to its present value. One can think of
variables X0, X1, ... as new information about the state of the world / experiment, and Zi as some
running metric we care about.

The following is an example of a martingale. Suppose a gambler plays a sequence of fair
games. Define Xi to be his gain in game i (which can be negative), and Zi to be the gambler’s total
gains after i games. More formally, we have X0, X1, ... with E[Xn+1|X0, ..., Xn] = 0 and Z0, Z1, ...
with Zn = ∑n

i=0 Xi. To prove Z0, Z1, ... is a martingale with respect to X0, X1, ..., let us show the
third condition, as the first two are obvious:

E[Zn+1|X0, ..., Xn] = E[Zn + Xn+1|X0, ..., Xn]

= E[Zn|X0, ..., Xn] + E[Xn+1|X0, ..., Xn]

= E[Zn|X0, ..., Xn]

= Zn

where the last equality holds since Zn is a function of X0, ..., Xn. It is important to note that the
bets can have different amounts and can even depend on the outcomes of the previous games and
Z0, . . . , would still be a martingale.

A special type of martingale is a Doob martingales and is constructed as follows. Let
X0, X1, ..., Xn be random variables, and let Z be a random variable with E[|Y|] < ∞ (Y will
generally depend on X0, ..., Xn). Also define Zi = E[Y|X0, ..., Xi] for all 0 ≤ i ≤ n. Then Z0, ..., Zn
is a martingale with respect to X0, ..., Xn since

E[Zi+1|X0, ..., Xi] = E
[
E[Y|X0, ..., Xi+1]

∣∣X0, ..., Xi
]

= E[Y|X0, ..., Xi]

= Zi.
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Consider the following example of a Doob martingale. We have m balls that we throw
uniformly at random in one of n bins. We care about the number of empty bins after all m balls
are thrown. Let Y be this random number, and let Xi for 1 ≤ i ≤ m be the bin where ball i lands
(we can define X0 = −1). Then Z0 is simply E[Y|X0] = E[Y], a deterministic number. However,
for i ≥ 1, each Zi = E[Y|X0, ..., Xi] is a refined estimate of the eventual number of empty bins as a
function of the “known” outcomes X1, ..., Xi. As i increases, Zi becomes a more precise estimate of
Y.

Many Chernoff like tail bounds are known for martingales, here is a well-known one.

Theorem 1.2 (Azuma-Hoeffding Inequality). Let X0, ..., Xn be a martingale (with respect to itself) such
that Xk − Xk−1 ≤ ck. Then, for all t ≥ 1 and λ > 0,

Pr
[
|Xt − X0| ≥ λ

]
≤ 2 · exp

(
− λ2

2 ∑t
k=1 c2

k

)
.

For instance, one can use it to upper bound Pr
[
|Y−E[Y]| ≥ ε

]
for the balls and bins problem.

E[Y] doesn’t even need to be known.

2 Application to Sub-isotropic Rounding

Ideally, we would apply Theorem 1.2 to show concentration, but it’s somewhat difficult to apply to
sub-isotropic rounding. Even though we have Yk = Xk − Xk−1 ≤ 1, our random walk makes very
small updates (recall our updates were εU1/2r for ε ≤ n−3/2/2), so the N for which XN is integral
may be fairly large compared to E [X]. This is why we do the more involved Freedman-type
bound as below which does not depend on N. We will use this lemma to complete the proof that
sub-isotropic updates imply concentration.

Lemma 2.1. Let 0 < α < 1, t ≥ 0. Let Z0, Z1, ... be random variables with Z0 deterministic. Let
Yk = Zk − Zk−1 ≤ 1. Finally, assume

E[Yk|Z1, ..., Zk−1] ≤ −αE[Y2
k |Z1, ..., Zk−1].

Then

Pr[Zk − Z0 > t] ≤ e−αt.

Notice that, unlike in Azuma-Hoeffding Inequality, the right hand side of the tail bound
inequality doesn’t feature k. The price of it is that we don’t assume a martingale: instead of
E[Yk|Z1, ..., Zk−1] = 0, we have E[Yk|Z1, ..., Zk−1] ≤ −αE[Y2

k |Z1, ..., Zk−1] < 0, i.e. we must skew in
the negative direction as time evolves.

Proof. By Markov’s inequality, we have

Pr[Zk − Z0 > t] = Pr[eα(Zk−Z0) ≥ eαt] ≤ E[eα(Zk−Z0)]

eαt .

This is at most e−αt if and only if E[eα(Zk−Z0)] ≤ 1 if and only if E[eαZk ] ≤ eαZ0 since Z0 is
deterministic.
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Denote Ek−1[ · ] = E[ · | Z1, ..., Zk−1]. We now bound the following.

Ek−1[eαZk ] = eαZk−1 ·Ek−1

[
eα(Zk−Zk−1)

]
= eαZk−1 ·Ek−1

[
eαYk

]
[≤]

by the below computation (Lemma 2.2), this is at most

[≤] eαZk−1 · exp
(
αEk−1[Yk] + (eα − α− 1)Ek−1[Y2

k ]
)
≤

eαZk−1 · exp
(
(eα − α2 − α− 1)Ek−1[Y2

k ]
)

This is at most eαZk−1 since eα ≤ 1 + α + α2 for 0 ≤ α ≤ 1.
So, we want to show E[eαZk ] ≤ eαZ0 and we have Ek−1[eαZk ] ≤ eαZk−1 . Applying Ek−2[ · ] to

both sides, we have

Ek−2

[
eαZk

]
= Ek−2

[
Ek−1

[
eαZk

]]
≤ Ek−2

[
eαZk−1

]
≤ eαZk−2 .

Repeating this k− 2 more times, we have

E
[
eαZk

]
= E0

[
eαZk

]
≤ eαZ0 .

as desired.

Finally, we show the computation used above.

Lemma 2.2. If X ≤ 1 and λ > 0, then E[eλX] ≤ exp
(
λE[X] + (eλ − λ− 1)E[X2]

)
.

Proof. Define

g(x) =

{
(ex − x− 1)/x2 if x 6= 0
1/2 if x = 0.

It can be seen that g(x) is increasing for all x ∈ R. Then ex − x − 1 = g(x)x2 and ex =
1 + x + g(x)x2.

When x ≤ 1,

eλx =

1 + λx + g(λx) · (λx)2 ≤
1 + λx + g(λ) · (λx)2 =

1 + λx + (eλ − λ− 1)x2.

Thus,

E[eλX] ≤
1 + λE[X] + (eλ − λ− 1)E[X2] ≤

exp
(

λE[X] + (eλ − λ− 1)E[X2]
)

.
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