Rounding Techniques in Approximation Algorithms

Lecture 17: Martingales

Lecturer: Nathan Klein Scribe: Tolik Zinovyev

1 Introduction to Martingales

We introduce the concept of a martingale and prove a crucial lemma that will lead to showing that sub-isotropic updates give us concentration.

Martingales are sequences of random variables that find applications in random walk and gambling problems. A rich collection of Chernoff-like tail bounds are known for martingales which make them a useful tool. Martingales are defined as follows:

Definition 1.1 (Martingale)**.** *A sequence of random variables Z*0, *Z*1, ... *is a martingale with respect to a sequence of random variables* $X_0, X_1, ...$ *if and only if for all n* > 0 *the following are true.*

- Z_n *is a function of* $X_0, X_1, ..., X_n$ *;*
- $\mathbb{E}[\vert Z_n \vert] < \infty$, *i.e.*, Z_n has well defined expectation;
- $\mathbb{E}[Z_{n+1}|X_0, ..., X_n] = Z_n$.

The last condition is something we saw in pipage rounding: the expectation of *i*-th coordinate after rounding conditioned on its present value is equal to its present value. One can think of variables X_0, X_1, \ldots as new information about the state of the world / experiment, and Z_i as some running metric we care about.

The following is an example of a martingale. Suppose a gambler plays a sequence of fair games. Define X_i to be his gain in game i (which can be negative), and Z_i to be the gambler's total gains after *i* games. More formally, we have $X_0, X_1, ...$ with $\mathbb{E}[X_{n+1}|X_0, ..., X_n] = 0$ and $Z_0, Z_1, ...$ with $Z_n = \sum_{i=0}^n X_i$. To prove $Z_0, Z_1, ...$ is a martingale with respect to $X_0, X_1, ...$, let us show the third condition, as the first two are obvious:

$$
\mathbb{E}[Z_{n+1}|X_0, ..., X_n] = \mathbb{E}[Z_n + X_{n+1}|X_0, ..., X_n] \n= \mathbb{E}[Z_n|X_0, ..., X_n] + \mathbb{E}[X_{n+1}|X_0, ..., X_n] \n= \mathbb{E}[Z_n|X_0, ..., X_n] \n= Z_n
$$

where the last equality holds since Z_n is a function of $X_0, ..., X_n$. It is important to note that the bets can have different amounts and can even depend on the outcomes of the previous games and Z_0, \ldots , would still be a martingale.

A special type of martingale is a Doob martingales and is constructed as follows. Let $X_0, X_1, ..., X_n$ be random variables, and let *Z* be a random variable with $\mathbb{E}[|Y|] < \infty$ (*Y* will generally depend on $X_0, ..., X_n$). Also define $Z_i = \mathbb{E}[Y|X_0, ..., X_i]$ for all $0 \le i \le n$. Then $Z_0, ..., Z_n$ is a martingale with respect to X_0 , ..., X_n since

$$
\mathbb{E}[Z_{i+1}|X_0, ..., X_i] = \mathbb{E}[\mathbb{E}[Y|X_0, ..., X_{i+1}]|X_0, ..., X_i]
$$

= $\mathbb{E}[Y|X_0, ..., X_i]$
= Z_i .

Consider the following example of a Doob martingale. We have *m* balls that we throw uniformly at random in one of *n* bins. We care about the number of empty bins after all *m* balls are thrown. Let *Y* be this random number, and let X_i for $1 \leq i \leq m$ be the bin where ball *i* lands (we can define $X_0 = -1$). Then Z_0 is simply $\mathbb{E}[Y|X_0] = \mathbb{E}[Y]$, a deterministic number. However, for $i \geq 1$, each $Z_i = \mathbb{E}[Y|X_0, ..., X_i]$ is a refined estimate of the eventual number of empty bins as a function of the "known" outcomes *X*1, ..., *Xⁱ* . As *i* increases, *Zⁱ* becomes a more precise estimate of *Y*.

Many Chernoff like tail bounds are known for martingales, here is a well-known one.

Theorem 1.2 (Azuma-Hoeffding Inequality)**.** *Let X*0, ..., *Xⁿ be a martingale (with respect to itself) such that* $X_k - X_{k-1} \leq c_k$ *. Then, for all* $t \geq 1$ *and* $\lambda > 0$ *,*

$$
\Pr\left[|X_t - X_0| \geq \lambda\right] \leq 2 \cdot \exp\left(-\frac{\lambda^2}{2\sum_{k=1}^t c_k^2}\right).
$$

For instance, one can use it to upper bound $Pr\left[|Y - \mathbb{E}[Y]| \geq \epsilon\right]$ for the balls and bins problem. $E[Y]$ doesn't even need to be known.

2 Application to Sub-isotropic Rounding

Ideally, we would apply [Theorem 1.2](#page-1-0) to show concentration, but it's somewhat difficult to apply to sub-isotropic rounding. Even though we have $Y_k = X_k - X_{k-1} \leq 1$, our random walk makes very small updates (recall our updates were $\epsilon U^{1/2}r$ for $\epsilon \leq n^{-3/2}/2$), so the *N* for which X_N is integral may be fairly large compared to **E** [*X*]. This is why we do the more involved Freedman-type bound as below which does not depend on *N*. We will use this lemma to complete the proof that sub-isotropic updates imply concentration.

Lemma 2.1. Let $0 < \alpha < 1$, $t \geq 0$. Let $Z_0, Z_1, ...$ be random variables with Z_0 deterministic. Let *Y*^{*k*} = Z_k − Z_{k-1} ≤ 1*. Finally, assume*

$$
\mathbb{E}[Y_k|Z_1,...,Z_{k-1}] \leq -\alpha \mathbb{E}[Y_k^2|Z_1,...,Z_{k-1}].
$$

Then

$$
\Pr[Z_k - Z_0 > t] \le e^{-\alpha t}.
$$

Notice that, unlike in Azuma-Hoeffding Inequality, the right hand side of the tail bound inequality doesn't feature *k*. The price of it is that we don't assume a martingale: instead of $\mathbb{E}[Y_k|Z_1,...,Z_{k-1}]=0$, we have $\mathbb{E}[Y_k|Z_1,...,Z_{k-1}]\leq -\alpha \mathbb{E}[Y_k^2|Z_1,...,Z_{k-1}]<0$, i.e. we must skew in the negative direction as time evolves.

Proof. By Markov's inequality, we have

$$
Pr[Z_k - Z_0 > t] = Pr[e^{\alpha(Z_k - Z_0)} \geq e^{\alpha t}] \leq \frac{\mathbb{E}[e^{\alpha(Z_k - Z_0)}]}{e^{\alpha t}}.
$$

This is at most $e^{-\alpha t}$ if and only if $\mathbb{E}[e^{\alpha(Z_k-Z_0)}]\leq 1$ if and only if $\mathbb{E}[e^{\alpha Z_k}]\leq e^{\alpha Z_0}$ since Z_0 is deterministic.

Denote $\mathbb{E}_{k-1}[\cdot] = \mathbb{E}[\cdot | Z_1, ..., Z_{k-1}].$ We now bound the following.

$$
\mathbb{E}_{k-1}[e^{\alpha Z_k}] = e^{\alpha Z_{k-1}} \cdot \mathbb{E}_{k-1}[e^{\alpha(Z_k - Z_{k-1})}] = e^{\alpha Z_{k-1}} \cdot \mathbb{E}_{k-1}[e^{\alpha Y_k}] \leq]
$$

by the below computation [\(Lemma 2.2\)](#page-2-0), this is at most

$$
\leq \left\{ \leq \right\} e^{\alpha Z_{k-1}} \cdot \exp \left(\alpha \mathbb{E}_{k-1} [Y_k] + (e^{\alpha} - \alpha - 1) \mathbb{E}_{k-1} [Y_k^2] \right) \leq
$$

$$
e^{\alpha Z_{k-1}} \cdot \exp \left((e^{\alpha} - \alpha^2 - \alpha - 1) \mathbb{E}_{k-1} [Y_k^2] \right)
$$

This is at most $e^{\alpha Z_{k-1}}$ since $e^{\alpha} \leq 1 + \alpha + \alpha^2$ for $0 \leq \alpha \leq 1$.

So, we want to show $\mathbb{E}[e^{\alpha Z_k}] \leq e^{\alpha Z_0}$ and we have $\mathbb{E}_{k-1}[e^{\alpha Z_k}] \leq e^{\alpha Z_{k-1}}$. Applying $\mathbb{E}_{k-2}[\,\cdot\,]$ to both sides, we have

$$
\mathbb{E}_{k-2}\left[e^{\alpha Z_k}\right] = \mathbb{E}_{k-2}\left[\mathbb{E}_{k-1}\left[e^{\alpha Z_k}\right]\right] \leq \mathbb{E}_{k-2}\left[e^{\alpha Z_{k-1}}\right] \leq e^{\alpha Z_{k-2}}.
$$

Repeating this *k* − 2 more times, we have

$$
\mathbb{E}\left[e^{\alpha Z_k}\right] = \mathbb{E}_0\left[e^{\alpha Z_k}\right] \leq e^{\alpha Z_0}.
$$

as desired.

Finally, we show the computation used above.

Lemma 2.2. *If* $X \le 1$ *and* $\lambda > 0$ *, then* $\mathbb{E}[e^{\lambda X}] \le \exp(\lambda \mathbb{E}[X] + (e^{\lambda} - \lambda - 1)\mathbb{E}[X^2]).$

Proof. Define

$$
g(x) = \begin{cases} (e^x - x - 1)/x^2 & \text{if } x \neq 0 \\ 1/2 & \text{if } x = 0. \end{cases}
$$

It can be seen that $g(x)$ is increasing for all $x \in \mathbb{R}$. Then $e^x - x - 1 = g(x)x^2$ and $e^x =$ $1 + x + g(x)x^2$.

When $x \leq 1$,

$$
e^{\lambda x} =
$$

\n
$$
1 + \lambda x + g(\lambda x) \cdot (\lambda x)^{2} \le
$$

\n
$$
1 + \lambda x + g(\lambda) \cdot (\lambda x)^{2} =
$$

\n
$$
1 + \lambda x + (e^{\lambda} - \lambda - 1)x^{2}.
$$

Thus,

$$
\mathbb{E}[e^{\lambda X}] \le
$$

1 + \lambda \mathbb{E}[X] + (e^{\lambda} - \lambda - 1)\mathbb{E}[X^2] \le
exp(\lambda \mathbb{E}[X] + (e^{\lambda} - \lambda - 1)\mathbb{E}[X^2]).

 \Box